
HEADTRACKING: CONTROLLING
YOUR COMPUTER WITH YOUR HEAD

New Mexico

Supercomputing Challenge
Final Report
April , 2013

Team: 64
Los Alamos Middle School

Team Members:
Alex Ionkov

Teacher:
Pauline Stephens

Project Mentor:
Latchesar Ionkov

1

TABLE OF CONTENTS

Executive Summary....................................... Page 3

Report.. Pages 4-17

 Introduction... Page 4

 Problem Definition.................................. Page 4

 Problem Solution..................................... Page 5

 Results.. Pages 6-10

 Conclusion.. Page 11

 Acknowledgements................................. Page 12

 Citations.. Page 13

Code.. Pages 14-17

 Appendix 1: Python Code....................... Pages 14-15

 Appendix 2: C Source............................. Pages 16-17

2

Executive Summary
This project explores the possibilities in creating a system which
allows paralyzed people to use a computer. Paralyzed people
have hard time living normal life. They always need someone
else, such as a caretaker. A study by the Christopher and Dana
Reeve Foundation reports that 5.6 million people, representing
1.9 percent of the population, or roughly 1 in 50 Americans are
paralyzed. In order to create a system such as this, research was
needed such as what parts of the body are not affected by paraly-
sis. The parts of the body that are not affected depends on the
type of paralysis you have. For spinal paralysis, it was found that
the tongue is not affected since it is not connected to the spine.
But, in order for to use the tongue a magnetic ball implant would
be required to do the testing, so that was not a choice. In order, to
avoid this transplant it was decided to use the head as the base of
this project; it’s moves will control the mouse. Using Python, Xlib,
and Pymouse as the software parts of this project this program
was created. Using the Wiimote, and safety glasses with infrared
LEDs as the hardware parts of this project the link from the pro-
gram to the outside world was created. The mouse would, when
calibrated correctly, move according to the position of the average
of the two infrared LEDs hence your head position. To do a click,
an idea was established that the tilting of the head would do the
job nicely and a coefficient was added which decided how much
you have to tilt your head for a click to occur.

3

Introduction
I saw a video called “Johnny Chung Lee demonstrates Wiimote
hacks”. I clicked on it and saw an interesting idea: Making a
Head-Tracking device using a Wiimote and sensor bar. I read
more about it and the article said that you could use infrared
LEDs to have the same effect as the sensor bar. I then started
experimenting with the Wiimote and the program.

Problem Definition
Paralysis is loss of muscle function for one or more muscles.
People that are paralyzed no longer have a life of their own. They
do not have as much freedom to do things as a healthy person
does. I want to write a program which allows them to control a
computer with their head. For some paralyzed people this pro-
gram will not help as their type of paralysis is not allowing them to
move their head, but for others it will help as they can move their
head at least a little. This will help their lives because they can
now do something on their own.

4

Problem Solution
The goal of this entire project was to create a head-tracking sys-
tem that enables the user to control their computer with their
head. The Wiimote allows the tracking of up to four infrared LEDs.
I am going to attach one or more LEDs to a head-piece and use
the Wiimote to track their position. The Wiimote connects to the
computer over Bluetooth and sends messages to the computer.
The program will receive all the messages from the Wiimote, scan
all these messages and pick out the ones that concern the LEDs
position. Then the program will move the mouse on the screen
according to the position of the infrared LED. The environment in
which this program will work in is Linux-only since it will use the
Xlib library to move the mouse and the Cwiid library to communi-
cate with the Wiimote.

5

Results
Figure 1

LED

Figure 1 shows the concept of moving your head in order to move
the mouse.

Figure 2

Cli

Turn your head to click, return your head
to previous position to release the click.

Wiimote

Figure 2 shows the concept of tilting your head in order to make
the mouse click.

6

Figure 3

x1, y1

x2, y2

x, y

Figure 3 shows the formulas used for calculating the positions of
each infrared LED and finding how close the LEDs are to the
Wiimote though that wasn’t used.

Figure 4

0 1024

45o

Horizontal

0

768

45
o

Vertical

Coordinates

7

Figure 4 shows an important factor of this project; the range of the
wiimote. The range of the wiimote (at a 45 ̊angle) horizontally is
1024 pixels and vertically it is 768 pixels

Figure 5

xa xb xc xd

x1 x2

y1 y2

Figure 5 shows how the wiimote “sees” the infrared LEDs. The
farther away, the smaller the LEDs; the closer, the bigger the
LEDs.

Program Shots
The program is not particularly graphic so it does not have much
to see but you can at least watch Terminal run it.

8

9

As you can see the program asks you to press the 1 & 2 buttons
on the wiimote in order to get a signal that bluetooth can read and
recognize the wiimote. It then prints “Wiimote activated” which
shows that a connection has been established from the computer
to the wiimote over bluetooth. After that, it prints the coordinates
of the click and then the release of the click. Notice the change of
x and y for each click and it’s pair release, this was implemented
so you can drag windows, or click and hold on a application to
quit it, etc...

There are certain limitations of my program including: the range of
the Wiimote, the program only runs on Linux because of CWiid, a
certain library that is linux-only, and not all paralyzed people are
able to use my program.

10

Conclusion
This project was successful to some extent and it did result in a
program which allows a person to move the mouse by moving a
infrared LED. Also it works for paralyzed people which was the
entire point and basis of this project. This program has the basic
needs to use a computer: mouse movement, and left clicking.

11

Acknowledgements

• Thanks go to Johnny Chung Lee for the idea of creating a head-
tracking system using a Wiimote.

• Thanks go to Latchesar Ionkov for helping at the sticky parts of
this project.

• Thanks go to Pauline Stephens for making this project possible.

12

Citations

- "Head Tracking for Desktop VR Displays using the WiiRemote - You-
Tube." YouTube, Web. 3 Jan. 2013.
http://www.youtube.com/watch?v=Jd3-eiid-Uw.

- Hejn, Kevin, and Jens Rosenkvist.
"http://image.diku.dk/projects/media/rosenkvist.hejn.08.pdf." Headtracking
using a wiimote. N.p., 28 Mar. 2008. Web. 2 Jan. 2013.
image.diku.dk/projects/media/rosenkvist.hejn.08.pdf.

- "Virtual Reality Using Wii Remote Head Tracking | NintendoFuse." Nin-
tendoFuse Everything Nintendo. N.p., n.d. Web. 3 Jan. 2013.
http://www.nintendofuse.com/2007/12/21

- Gotliv, Shaul, and Samuel Sayag.
"http://gip.cs.technion.ac.il/files/Projects/2009/Head_Tracking_for_GIPvie
w_VR_Displays_using_the_Wii_Remote_07072010.pdf." Head Tracking
for GIPview VR Displays using the Wii Remote. Yaron Honen, n.d. Web. 2
Jan. 2013.
gip.cs.technion.ac.il/files/Projects/2009/Head_Tracking_for_GIPview_VR_
Displays_using_the_Wii_Remote_07072010.pdf.

- Cunningham, Collin. "MAKE | Wiimote headtracking FPS demo." MAKE |
DIY projects, how-tos, and inspiration from geeks, makers, and hackers.
N.p., n.d. Web. 3 Jan. 2013.
http://blog.makezine.com/2008/03/26/wiimote-headtracking-fps/.

- RABIN, RONI CARYN. "Study Raises Estimate of Paralyzed Americans -
NYTimes.com." The New York Times - Breaking News, World News &
Multimedia. N.p., n.d. Web. 30 Mar. 2013.
<http://www.nytimes.com/2009/04/21/health/21para.html?_r=1&>.

13

http://www.youtube.com/watch?v=Jd3-eiid-Uw
http://www.youtube.com/watch?v=Jd3-eiid-Uw
http://image.diku.dk/projects/media/rosenkvist.hejn.08.pdf
http://image.diku.dk/projects/media/rosenkvist.hejn.08.pdf
http://www.nintendofuse.com/2007/12/21
http://www.nintendofuse.com/2007/12/21
http://gip.cs.technion.ac.il/files/Projects/2009/Head_Tracking_for_GIPview_VR_Displays_using_the_Wii_Remote_07072010.pdf
http://gip.cs.technion.ac.il/files/Projects/2009/Head_Tracking_for_GIPview_VR_Displays_using_the_Wii_Remote_07072010.pdf
http://gip.cs.technion.ac.il/files/Projects/2009/Head_Tracking_for_GIPview_VR_Displays_using_the_Wii_Remote_07072010.pdf
http://gip.cs.technion.ac.il/files/Projects/2009/Head_Tracking_for_GIPview_VR_Displays_using_the_Wii_Remote_07072010.pdf
http://blog.makezine.com/2008/03/26/wiimote-headtracking-fps/
http://blog.makezine.com/2008/03/26/wiimote-headtracking-fps/
http://www.nytimes.com/2009/04/21/health/21para.html?_r=1&
http://www.nytimes.com/2009/04/21/health/21para.html?_r=1&

Appendix 1: Python Code
#!/usr/bin/env python
###
Copyright (c) 2013 Alex Ionkov
#
Permission to use, copy, modify, and distribute this software for
any
purpose with or without fee is hereby granted, provided that the
above
copyright notice and this permission notice appear in all copies.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WAR-
RANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAM-
AGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
###

import sys
import cwiid, time import thread import os

from Xlib import X, display
from pymouse import PyMouse
from math import *
from numpy import * #Import matrix libraries

print "Press 1 & 2 on the Wiimote simultaneously to find it"
To find remote, type the following in a Shell: # hcitool scan
Then enter the address in the following command wiimote =
cwiid.Wiimote()
m = PyMouse()

x0 = 0
y0 = 0
x1 = 0
y1 = 0 x= 0
y= 0 dist = 0 camera = 0 xc = 0

yc = 0 distc = 0

14

cwiid.LED1_ON
wiimote.enable(cwiid.FLAG_MESG_IFC)
wiimote.rpt_mode = cwiid.RPT_IR | cwiid.RPT_BTN
print "Wiimote activiated..." #print "wiimote", wiimote

def wiiproc():
global x0, y0, x1, y1, x, y, dist, xc, yc, distc, pressed pressed =
False

while True:
messages = wiimote.get_mesg() # Get Wiimote messages for mesg in mes-
sages: # Loop through Wiimote Messages

def main(): global camera

if mesg[0] == cwiid.MESG_BTN: if mesg[1] == 8:

print "Calibrate: ", x, y, dist xc = x
yc = y
distc = dist

elif mesg[0] == cwiid.MESG_IR: # If message is IR data s = mesg[1][0]

if s:

x0 = s[’pos’][0] y0 = s[’pos’][1]

s = mesg[1][1] if s:

x1 = s[’pos’][0] y1 = s[’pos’][1]

 dx = x0 − x1
 dy = y0 − y1
 dist = math.sqrt(dx*dx + dy*dy)
 x = (x0 + x1) / 2
 y = (y0 + y1) / 2
 m.move(1024 − x, 768 − y)
if abs(y0 − y1) > 100 and pressed == False: pressed = True

os.system("./mpress");

print "Click: ", 1024 − x, 768 − y elif abs(y0 − y1) < 100 and pressed
== True:

pressed = False os.system("./mrelease");
print "Released: ", 1024 − x, 768 − y

 wiimote.enable(cwiid.FLAG_MESG_IFC)
 wiimote.rpt_mode = cwiid.RPT_IR | cwiid.RPT_BTN
 wiiproc()
if __name__ == "__main__": wiiproc()

15

Appendix 2: C Source

Click Code:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <unistd.h>

#include <X11/Xlib.h>
#include <X11/Xutil.h>

void mousePress(int button)
{
" Display *display = XOpenDisplay(NULL);

" XEvent event;
"
" if(display == NULL)
" {
" " fprintf(stderr, "Errore nell'apertura del Display !!!\n");
" " exit(EXIT_FAILURE);
" }
"
" memset(&event, 0x00, sizeof(event));
"
" event.type = ButtonPress;
" event.xbutton.button = button;
" event.xbutton.same_screen = True;
"
" XQueryPointer(display, RootWindow(display, DefaultScreen(dis-
play)), &event.xbutton.root, &event.xbutton.window,
&event.xbutton.x_root, &event.xbutton.y_root, &event.xbutton.x,
&event.xbutton.y, &event.xbutton.state);
"
" event.xbutton.subwindow = event.xbutton.window;
"
" while(event.xbutton.subwindow)
" {
" " event.xbutton.window = event.xbutton.subwindow;
" "
" " XQueryPointer(display, event.xbutton.window,
&event.xbutton.root, &event.xbutton.subwindow, &event.xbutton.x_root,
&event.xbutton.y_root, &event.xbutton.x, &event.xbutton.y,
&event.xbutton.state);
" }
"

16

" if(XSendEvent(display, PointerWindow, True, 0xfff, &event) == 0)
fprintf(stderr, "Errore nell'invio dell'evento !!!\n");
"
" XFlush(display);
"
" XCloseDisplay(display);
}

int main()
{
" mousePress(Button1);
}

Release click Code:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <unistd.h>

#include <X11/Xlib.h>
#include <X11/Xutil.h>

void mouseRelease(int button)
{
" Display *display = XOpenDisplay(NULL);

" XEvent event;
"
" if(display == NULL)
" {
" " fprintf(stderr, "Errore nell'apertura del Display !!!\n");
" " exit(EXIT_FAILURE);
" }
"
" memset(&event, 0x00, sizeof(event));
"
" event.type = ButtonRelease;
" event.xbutton.button = button;
" event.xbutton.same_screen = True;
"
" XQueryPointer(display, RootWindow(display, DefaultScreen(dis-
play)), &event.xbutton.root, &event.xbutton.window,
&event.xbutton.x_root, &event.xbutton.y_root, &event.xbutton.x,
&event.xbutton.y, &event.xbutton.state);

17

"
" event.xbutton.subwindow = event.xbutton.window;
"
" while(event.xbutton.subwindow)
" {
" " event.xbutton.window = event.xbutton.subwindow;
" "
" " XQueryPointer(display, event.xbutton.window,
&event.xbutton.root, &event.xbutton.subwindow, &event.xbutton.x_root,
&event.xbutton.y_root, &event.xbutton.x, &event.xbutton.y,
&event.xbutton.state);
" }
"
" if(XSendEvent(display, PointerWindow, True, 0xfff, &event) == 0)
fprintf(stderr, "Errore nell'invio dell'evento !!!\n");
"
" XFlush(display);
"
" XCloseDisplay(display);
}

int main()
{
" mouseRelease(Button1);
}

18

